Fuzzy Neural Network Models for Supervised Classification: Multispectral Image Analysis

نویسندگان

  • Arun D. Kulkarni
  • Kamlesh Lulla
چکیده

It has been well established that neural networks provide a reasonable and powerful alternative to conventional classifiers. During the past few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of fuzzy logic and neural networks seems natural because two approaches generally attack the design of “intelligent” systems from quite different angles. Neural networks provide algorithms for learning, classification, and optimization whereas fuzzy logic deals with issues such as reasoning on a higher (semantic or linguistic) level. Consequently the two technologies complement each other. In this paper we propose two novel fuzzy-neural network models for supervised learning. The first model consists of three layers, and the second model consists of four layers. In both models, the first two layers implement fuzzy membership functions and the remaining layers implement the inference engine. Both models use the gradient decent technique for learning. As an illustration, we have analyzed two Thematic mapper images using these models. Results are presented in the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Neural Network Models For Multispectral Image Analysis

Fuzzy neural networks (FNNs) provide a new approach for classification of multispectral data and to extract and optimize classification rules. Neural networks deal with issues on a numeric level, whereas fuzzy logic deals with them on a semantic or linguistic level. FNNs synthesize fuzzy logic and neural networks. Recently, there has been growing interest in the research community not only to u...

متن کامل

Multispectral Image Analysis Using Random Forest

Classical methods for classification of pixels in multispectral images include supervised classifiers such as the maximum-likelihood classifier, neural network classifiers, fuzzy neural networks, support vector machines, and decision trees. Recently, there has been an increase of interest in ensemble learning – a method that generates many classifiers and aggregates their results. Breiman propo...

متن کامل

Multispectral Data Classification Based on Spectral Indices and Fuzzy C-mean

Numerous applications make use of data on land use and land cover (LULC). Given their importance and use, land cover data is assumed to be readily available or trivially acquired for a given landscape. Unfortunately, this is often not the case. LULC data at hand are often out-of-date, inappropriate for a particular application [1], or contain other difficulties. Thematic mapping of remotely sen...

متن کامل

Supervised and Unsupervised Neural Network for Classification of Satellite Images

This paper is of classification of remote sensed Multispectral satellite images using supervised and unsupervised neural networks. Feature extraction techniques like mean, variance and standard deviation are used. Higher resolution causes higher spectral variability within a class and lessens the statistical separability among different classes in a traditional pixel-based classification. Sever...

متن کامل

Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification

In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000